Расчет сваи на горизонтальную нагрузку пример - Brigada-Doma.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Расчет сваи на горизонтальную нагрузку пример

8.2.2. Расчет свай на горизонтальные нагрузки и изгибающие моменты

Расчет на горизонтальную нагрузку свай со свободным верхним концом (шарнирное сопряжение сваи с расположенными выше конструкциями) выполняется согласно приложению к СНиП II-17-77 (ниже указываются номера формул из него) в следующем порядке:

  • – определяются исходные расчетные характеристики — коэффициенты постели грунта, прорезаемого сваей и под ее нижним концом, коэффициент деформации, приведенная глубина погружения и условная рабочая ширина сваи [формулы (3)—(6)];
  • – устанавливаются расчетные нагрузки применительно ко второму предельному состоянию;
  • – вычисляются горизонтальные перемещения и углы поворота сваи от единичных сил, действующих на уровне поверхности грунта [формулы (11)—(13)];
  • – вычисляются горизонтальное перемещение и угол поворота сваи на уровне поверхности грунта или подошвы низкого ростверка от действующих расчетных нагрузок [формулы (9) и (10)];
  • – определяются горизонтальное перемещение и угол поворота сваи на уровне ее верха от действующих расчетных нагрузок [формулы (7) и (8)];
  • – вычисленные перемещения сопоставляются с допустимыми предельными (завершается расчет по второму предельному состоянию);
  • – устанавливаются расчетные нагрузки применительно к первому предельному состоянию;
  • – определяются расчетные усилия, действующие в сечении свай на различной глубине, и давление на грунт по контакту с боковой поверхностью сваи [формулы (16)—(19)];
  • – производится расчет устойчивости основания, окружающего сваю [формулы (14) и (15)];
  • – по наибольшим расчетным усилиям в сечении проверяется прочность материала сваи в соответствии со СНиП 2.02.01-83 и с рекомендациями настоящей главы Справочника (завершается расчет по первому предельному состоянию).

При жесткой заделке сваи в ростверке (при отсутствии поворота ее головы) расчет на горизонтальную нагрузку производится в той же последовательности с учетом дополнительного момента, возникающего в голове сваи и направленного в сторону, противоположную направлению горизонтальной силы [формула (20)].

В Руководстве [3] приведен табличный метод расчета свай на горизонтальную нагрузку, ускоряющий расчет.

Для облегчения расчета наиболее распространенных сечений забивных и набивных свай на горизонтальную нагрузку составлены графики для определения:

  • – коэффициента деформации αd по формуле (6) (рис. 8.8);
  • – горизонтального перемещения сваи u на уровне поверхности грунта по формуле (9) (рис. 8.9);
  • – наибольшего дополнительного момента, возникающего в свае от действия горизонтальной силы на уровне поверхности грунта, по формуле (17) (рис. 8.10);
  • – момента, возникающего в голове сваи при отсутствии ее поворота, по формуле (20) (рис. 8.11).

На рис. 8.8 для определения коэффициента деформации каждая кривая соответствует конкретному сечению сваи. Значение αd определяется по заданному коэффициенту пропорциональности Кр , откладываемому на оси абсцисс, от которой восставляется перпендикуляр до пересечения с кривой, соответствующей заданному сечению.

Графики (см. рис. 8.9) для определения горизонтального перемещения сваи на уровне поверхности грунта составлены для свай с приведенной глубиной погружения d´p ≥4 при Кр = 500—1200 кН/м 4 . При промежуточных значениях Кр горизонтальное перемещение устанавливается по линии, соответствующей ближайшим меньшим значениям Кр .

Горизонтальное перемещение и определяется раздельно от горизонтальной силы Fh и момента М , действующих на уровне поверхности грунта, а затем суммируется.

Наибольший дополнительный момент Мс определяется следующим образом: по соответствующему найденному из рис. 8.8 значению αd на оси абсцисс (рис. 8.10) откладывается заданная величина Fh и из этой точки восставляется перпендикуляр до пересечения с прямой, соответствующей заданному отношению М/Fh ; точка пересечения определяет значение Мс . Отношение M/Fh введено для упрощения построения графиков.

Абсолютная величина наибольшего момента, действующего в сечении сваи, определяется как сумма моментов М и Мс .

Между значениями Мc и Fh установлена прямая пропорциональная зависимость и выявлено, что глубина приложения Мc изменяется от d´p = 1,3—1,5 при M/Fh = 0 до d´p = 0,1—0,3 при M/Fh = 100. Выполненные расчеты показали, что значение Мс существенно увеличивается с уменьшением коэффициента деформации αd и отношения M/Fv но незначительно уменьшается с увеличением d´p от 2,5 до 4. Поэтому решено графики составить для приведенной глубины d´p = 4.

Порядок пользования рис. 8.11 для определения момента, возникающего в голове сваи при отсутствии ее поворота, следующий: на левой половине оси абсцисс откладывается заданное значение Fh , от которого восставляется перпендикуляр до пересечения с прямой, соответствующей заданной приведенной глубине d´p из точки пересечения проводится горизонтальная прямая до прямой, соответствующей заданному коэффициенту αd , и из этой точки опускается перпендикуляр до оси абсцисс, определяющий величину Мс .

Пример 8.1. Определить горизонтальное перемещение сваи с шарнирной заделкой и проверить ей на прочность. Исходные данные: свая С6-30 по ГОСТ 19804.1-79 на бетона В15 и с продольной арматурой 4Ø10АII погружена в суглинки с показателем текучести IL = 0,35 на 5,7 м. На уровне поверхности грунта на сваю действует расчетная горизонтальная нагрузка 20 кН и вдавливающая сила 500 кН. Сопряжение с ростверком шарнирное. Коэффициент надежности по нагрузке при расчете по второму предельному состоянию γf = 1, по первому предельному состоянию γf = 1,2. Продельное горизонтальное перемещение сваи на уровне поверхности грунта равняется 1 см.

Решение. По СНиП II-17-77 находим коэффициент пропорциональности:

Kр = 5000 + (8000 – 5000) 1,56/6 = 6000 кН/м 4 .

По рис. 8.8 для сваи сечением 30×30 см при Кp = 6000 кН/м 4 определяем коэффициент деформации αd = 0,8 м –1 . Тогда приведенная длина d´p = αddp = 0,8×5,6 = 4,56.

По рис. 8.9 для d´p > 4 и Кр = 6000 кН/м 4 при Fh = 20 кН находим горизонтальное перемещение сваи на уровне поверхности грунта u = 5,5 мм, что меньше предельного перемещения (1 см).

Определяем нагрузку на сваю для расчета по первому предельному состоянию:

По рис. 8.10 для M/Fh и αd = 0,8 м –1 при Fh = 24 кН находим наибольший расчетный момент в сечении сваи: Мd = 23 кН·м.

По черт. 3 прил. 2 к ГОСТ 19804.1-79 убеждаемся, что при Fv = 600 кН и М = 23 кН·м прочность материала сваи в эксплуатационный период обеспечивается при стандартном армировании сваи.

Пример 8.2. Определить горизонтальное перемещение сваи с жесткой заделкой и проверить ее на прочность. Исходные данные: верх сваи жестко заделан в ростверк. Остальные данные те же, что и в примере 8.1.

Решение. По рис. 8.11 для Fh = 24 кН, d´p = 4 и αd = 0,8 м –1 определяем момент, действующий на сваю в плоскости заделки ее в ростверк при отсутствии поворота головы сваи, М´p = –20 кН·м.

Горизонтальное перемещение верха сваи на уровне поверхности грунта, определенное по рис. 8.9, u = 5,5 мм от Fv = 20 кН; u = –2,7 мм от Мр = – 20 кН·м. Суммарное перемещение u = 5,5 – 2,7 = 2,8 мм, что меньше предельного перемещения 1 см.

Наибольший расчетный момент действует на сваю в плоскости заделки ее в ростверк и равен 24 кН·м.

По черт. 3 прил. 2 к ГОСТ 19804.1-79 убеждаемся, что при Fv = 600 кН и М = 24 кН·м прочность материала сваи в эксплуатационный период обеспечивается при стандартном армировании сваи.

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Указания по расчету свайных фундаментов

Основные указании

Расчет свайных фундаментов и их оснований должен быть выполнен по предельным состояниям:
а) первой группы:
— по прочности материала сван и свайных ростверков;
— по несущей способности грунта основания свай;
— но несущей способности оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.) или если основания ограничены откосами или сложены крутопадающими слоями фунта и т.п.;
б) второй группы
— по осадкам оснований свай и свайных фундаментов от вертикальных на-грузок;
— по перемещениям свай (горизонтальным up , углам поворота головы свай ψp) совместно с грунтом оснований от действия горизонтальных нагрузок и моментов.
— по образованию или раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.
Расчет свай, свайных фундаментов и их оснований по несущей способности необходимо выполнять на основные и особые сочетания нагрузок, по деформациям — на основные сочетания.
Все расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и фунтов.
При наличии результатов полевых исследований несущую способность грунта основания свай следует определять с учетом данных статического зондирования грунтов, испытаний грунтов эталонными сваями или по данным динамических испытаний свай. В случае проведения испытаний свай статической нагрузкой несущую способность грунта основания сваи следует принимать по результатам этих испытаний

Читайте также:  Нужно ли бетонировать винтовые сваи

Расчет сван по прочности материала

При расчете свай всех видов по прочности материала сваю следует рассматривать как стержень, жестко защемленный в фунте в сечении, расположенном от подошвы ростверка на расстоянии l1 определяемом по формуле:

где l— длина участка сваи от подошвы высокого ростверка до уровня планировки грунта, м;
ag — коэффициент деформации. 1/м.

Если для буровых свай и свай — оболочек, заглубленных сквозь толщу нескального грунта и заделанных в скальный грунт, отношение 2/ag , то следует принимать

(где h — глубина погружения сваи или сваи — оболочки, отсчитываемая от ее нижнего конца до уровня планировки грунта при высоком ростверке, подошва которого расположена над грунтом, и до подошвы ростверка при низком ростверке, подошва которого опирается или заглублена в нескальные грунты, за исключением сильносжимаемых, м).
При расчете по прочности материала буро-инъекционных свай, прорезающих сильносжимаемые грунты с модулем деформации Е = 5 МПа и менее, расчетную длину свай на продольный изгиб ld , в зависимости от диаметра свай d следует принимать равной:

при Е ≤ 2 МПа ld = 25d
при Е = 2 — 5 МПа ld = 15d.

В случае если ld превышает толщину слоя сильносжимаемого грунта расчетную длину следует принимать равной 2hg.
Расчеты конструкций свай всех видов следует производить на воздействие нагрузок, передаваемых на них от здания или сооружения, а забивных свай, кроме того, на усилия, возникающие в них от собственного веса при изготовлении, складировании, транспортировании свай, а также при подъеме их на копер за одну точку, удаленную от головы свай на 0,3l (где l -длина сваи).
Усилие в свае (как балке) от воздействия собственного веса следует определять с учетом коэффициента динамичности, равного:
1,5 — при расчете по прочности;
1,25 — при расчете по образованию и раскрытию трещин.
В этих случаях коэффициент надежности по нагрузке к собственному весу сваи принимается равным единице.
Расчетная нагрузка, допускаемая на железобетонную сваю по материалу, определяется по формуле:

где ϒb3 — коэффициент условий работы бетона, принимаемый ϒb3= 0,85 для свай, изготавливаемых на месте строительства;
ϒcb — коэффициент, учитывающий влияние способа производства свайных работ;
Rb — расчетное сопротивление бетона сжатию;
Ab — площадь сечения сваи нетто,
Rgc — расчетное сопротивление арматуры сжатию;
Ag — площадь сечения арматуры.
Пример 1.

Определение несущей способности сваи по материалу
Определить несущую способность буронабивной сваи диаметром d = 0,2 м по материалу. Свая выполняется в глинистом грунте без крепления стенок и отсутствии грунтовых вод. Материал сваи: бетон В20. Свая армирована 4 стержнями d12 A400.
Решение:
Площадь сечения сваи нетто:
Ab = πd 2 /4 = 3,14 * 0,22 2 /4 = 0,0314 м 2 .
Площадь сечения 4d12 A400: Ag = 452 мм 2 = 452 * 10 -6 м 2 .
Расчетное сопротивление бетона сжатию: Rb = 11,5 МПа.
Расчетное сопротивление арматуры А400 сжатию:
Rgc = 355 МПа.
Коэффициент условии работы бетона: ϒb3 = 0,85.
Коэффициент, учитывающий влияние способа производства свайных работ: ϒcb = 1,0.
Расчетная нагрузка, допускаемая на .железобетонную сваю но материалу:

N = 0,85* 1,0 * 11,5 * 0,0314 + 355 * 452 * 10 -6 = 0,467 МПа = 467 кН.

Расчет свай по несущей способности грунта

Одиночную сваю в составе фундамента и вне его по несущей способности грунтов основания следует рассчитывать исходя из условия:

где N — расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании);
Fd — расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи.
γk — коэффициент надежности по грунту.

При расчете свай всех видов как на вдавливающие, так и на выдергивающие нагрузки продольное усилие, возникающее в свае от расчетной нагрузки N, следует определять с учетом собственного веса сваи, принимаемого с коэффициентом надежности ио нагрузке, увеличивающим расчетное усилие.
Если расчет свайных фундаментов производится с учетом ветровых и крановых нагрузок, то воспринимаемую крайними сваями расчетную нагрузку допускается повышать на 20 % (кроме фундаментов опор линий электропередачи).
Если сваи фундамента опоры моста в направлении действия внешних нагрузок образуют один или несколько рядов, то при учете (совместном или раздельном) нагрузок от торможения, давления ветра, льда и навала судов, воспринимаемых наиболее нагруженной сваей, расчетную нагрузку допускается повышать на 10 % при четырех сваях в ряду и на 20 % при восьми сваях и более При промежуточном числе свай процент повышения расчетной нагрузки определяется интерполяцией.
Расчетную нагрузку на сваю N, кН. следует определять, рассматривая фундамент как рамную конструкцию, воспринимающую вертикальные и горизонтальные нагрузки и изгибающие моменты.
Для фундаментов с вертикальными сваями расчетную нагрузку на сваю допускается определять по формуле:

где Nd — расчетная сжимающая сила, кН;
Mx , My расчетные изгибающие моменты, кНм, относительно главных центральных осей x и y плана свай в плоскости подошвы ростверка;

n — число свай в фундаменте.
xi, yi — расстояния от главных осей до оси каждой сваи, м;

х , у — расстояния от главных осей до оси каждой сваи, для которой вычисляется расчетная нагрузка, м.

Рис. 1. Схема для определении нагрузки на сваю

Горизонтальную нагрузку, действующую на фундамент с вертикальными сваями одинакового поперечного сечения, допускается принимать равномерно распределенной между всеми сваями.
Сваи и свайные фундаменты следует рассчитывать по прочности материала и производить проверку устойчивости фундаментов при действии сил морозного пучения, если основание сложено пучинистыми грунтами.

Пример 2.

Определение нагрузок на сваи во внецентренно-нагруженном фундаменте

Необходимо определить нагрузки, приходящиеся на сваи (см. рис.2). Количество свай в фундаменте n = 6. Нагрузки, действующие на фундамент:

Винтовые сваи нагрузка и расчеты

Винтовые сваи нагрузка и расчеты

Частые вопросы на начальном этапе строительства: “Какую нагрузку несут винтовые сваи с литым наконечником? Какой диаметр свай выбрать для фундамента деревянного дома, террасы, бани и т.п…?

Выбирая винтовые сваи, необходимо учесть все возможные конструктивные особенности строения. Нужно учитывать материалы из которых строится ваше здание, его особенности и конструкция — результат этих калькуляций: нагрузка сооружения на свайно-винтовой фундамент. Калькуляцию нагрузок, делают с небольшим, но запасом.

Винтовые сваи с обеспечением несущей способности, выдерживают следующие нагрузки:

Тип винтовой сваи Нагрузка на сваю не менее, тн
СВЛ-571
СВЛ-762
СВЛ-892,5
СВЛ-1085
СВЛ-1338
СВЛ-15915
СВЛ-21920
СВЛ-32530

Самые популярные стальные сваи используемые в загородном строительстве каркасных домов, а также домов из бревна и бруса — это винтовые сваи СВЛ-89 и винтовые сваи СВЛ-108. Их длина зависит от грунта на строительном участке. Самый популярный и часто используемый размер – 108мм при длине сваи 3 метра.

Для строительства сооружений из газобетона или кирпича, используют винтовые сваи типа СВЛ-133 и выше.

Расчет свайно-винтовых фундаментов

Расчет свайно-винтовых фундаментов выполняется по предельным состояниям 1-ой и 2-ой группы. Расчет 1-ой группы для предельных состояний производят по:

  • прочности материала свай и свайных ростверков;
  • несущей способности грунта основания свай;
  • несущей способности оснований свайных фундаментов;
  • если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.) или если основания ограничены откосами или крутопадающими слоями грунта и т.п.

Расчеты по предельным состояниям 2-ой группы производят по:

  • осадкам оснований свай и свайных фундаментов от вертикальных нагрузок;
  • перемещениям свай (горизонтальным углам поворота головы свай) вместе с грунтом основания от действий горизонтальных нагрузок и моментов.

Особенности процесса проектирования свайного фундамента

Для того, чтобы определить, как правильно производить расчет нагрузок свайного фундамента, необходимо учесть следующие параметры:

  1. при глубине залегания в 1,7 метра, учитывают: общий вес сооружения, который будет оказывать нагруки на фундамент и грунт;
  2. фактический вес, который включает в себя: вес стен, вес перекрытий и потолков, вес крыши, кровельного покрытия, фасадной и внутренней отделки;
  3. расчет полезной нагрузки, которая создается при эксплуатации дома (по СНиП для жилого дома равна 150 кг/м²). К такой нагрузке можно отнести: вес мебели, людей, вещей и бытового оборудования;
  4. снеговая нагрузка, которая рассчитывается из справочных данных по региону строительства;
  5. коэффициент запаса (обычно используется равным 1,1);
  6. грузонесущая способность грунта на том месте, где происходит установка фундамента;
  7. глубина для залегания одной опоры (принимается за 1,7 метра – оптимальное значение для грунта из плотной глины).
  8. винтовая свая 76*200*2500 мм – расчетная минимальная нагрузка составляет 2000 кг;
  9. 89*250*2500 мм – расчетная минимальная нагрузка 3000 кг;
  10. 108*300*2500 мм – расчетная минимальная нагрузка 5000 кг.
Читайте также:  Через какое расстояние ставят винтовые сваи

Пример расчета свайно-винтового фундамента 2-х этажного дома с размером 6х8 метров

Рассмотрим пример расчета фундамента из винтовых свай при строительстве 2-х эт. дома площадью 6000х8000 мм. У него будет сооружаться пологая крыша и 1 внутренняя несущая стена. Ставится этот дом на глинистой почве с несущей способностью в 4,5 кг/см².

Математические расчеты следующие:

  1. площадь кровли дома – 50 м²;
  2. площадь чердака – 50 м²;
  3. площадь для перекрытий 1-го и 2 этажа – 100 м²;
  4. площадь всех внешних стен – 160 м²;
  5. площадь несущей внутренней стены – 50 м²;
  6. периметр фундамента – 34 м.

В результате получаем следующие данные по нагрузкам на фундамент:

  1. при использовании плосского шифера для кровли, ее вес составит 2,5 тонны;
  2. вес чердачного перекрытия – 3,5 тонны;
  3. перекрытий для этажей – 10 тонн;
  4. вес внешних стен – 16 тонн;
  5. вес внутренних стен – 5 тонн;
  6. ростверка + сваи – 3 тн;
  7. полезная нагрузка (мебель, оборудование, примерное количество проживающих) – 26 тонн;
  8. вес снега – 5 тонн (из справочника региона);
  9. итого общий вес всего строения – 71 т.

При получении данных нужно пользоваться специальными справочными данными и нормами, которые зависят от материала, применяемого в строительстве дома.

Теперь почитаем сколько составит расчетная нагрузка, для этого, к общему весу сооружения прибавляем 30%, в результате получаем 92,3 тонны. Шаг винтовых свай под внутренней несущей стеной должен быть на 30% больше, чем для внешних стен.

Согласно всем полученным данным, одна винтовая свая СВЛ-108 с литым наконечником, будет иметь несущую способность в 4,65 тонн, а общее количество свай для фундамента 2-х этажного дома площадью 48м2 составит 20 шт.

Указания по расчету свайных фундаментов

Основные указании

Расчет свайных фундаментов и их оснований должен быть выполнен по предельным состояниям:
а) первой группы:
— по прочности материала сван и свайных ростверков;
— по несущей способности грунта основания свай;
— но несущей способности оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.) или если основания ограничены откосами или сложены крутопадающими слоями фунта и т.п.;
б) второй группы
— по осадкам оснований свай и свайных фундаментов от вертикальных на-грузок;
— по перемещениям свай (горизонтальным up , углам поворота головы свай ψp) совместно с грунтом оснований от действия горизонтальных нагрузок и моментов.
— по образованию или раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.
Расчет свай, свайных фундаментов и их оснований по несущей способности необходимо выполнять на основные и особые сочетания нагрузок, по деформациям — на основные сочетания.
Все расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и фунтов.
При наличии результатов полевых исследований несущую способность грунта основания свай следует определять с учетом данных статического зондирования грунтов, испытаний грунтов эталонными сваями или по данным динамических испытаний свай. В случае проведения испытаний свай статической нагрузкой несущую способность грунта основания сваи следует принимать по результатам этих испытаний

Расчет сван по прочности материала

При расчете свай всех видов по прочности материала сваю следует рассматривать как стержень, жестко защемленный в фунте в сечении, расположенном от подошвы ростверка на расстоянии l1 определяемом по формуле:

где l— длина участка сваи от подошвы высокого ростверка до уровня планировки грунта, м;
ag — коэффициент деформации. 1/м.

Если для буровых свай и свай — оболочек, заглубленных сквозь толщу нескального грунта и заделанных в скальный грунт, отношение 2/ag , то следует принимать

(где h — глубина погружения сваи или сваи — оболочки, отсчитываемая от ее нижнего конца до уровня планировки грунта при высоком ростверке, подошва которого расположена над грунтом, и до подошвы ростверка при низком ростверке, подошва которого опирается или заглублена в нескальные грунты, за исключением сильносжимаемых, м).
При расчете по прочности материала буро-инъекционных свай, прорезающих сильносжимаемые грунты с модулем деформации Е = 5 МПа и менее, расчетную длину свай на продольный изгиб ld , в зависимости от диаметра свай d следует принимать равной:

при Е ≤ 2 МПа ld = 25d
при Е = 2 — 5 МПа ld = 15d.

В случае если ld превышает толщину слоя сильносжимаемого грунта расчетную длину следует принимать равной 2hg.
Расчеты конструкций свай всех видов следует производить на воздействие нагрузок, передаваемых на них от здания или сооружения, а забивных свай, кроме того, на усилия, возникающие в них от собственного веса при изготовлении, складировании, транспортировании свай, а также при подъеме их на копер за одну точку, удаленную от головы свай на 0,3l (где l -длина сваи).
Усилие в свае (как балке) от воздействия собственного веса следует определять с учетом коэффициента динамичности, равного:
1,5 — при расчете по прочности;
1,25 — при расчете по образованию и раскрытию трещин.
В этих случаях коэффициент надежности по нагрузке к собственному весу сваи принимается равным единице.
Расчетная нагрузка, допускаемая на железобетонную сваю по материалу, определяется по формуле:

где ϒb3 — коэффициент условий работы бетона, принимаемый ϒb3= 0,85 для свай, изготавливаемых на месте строительства;
ϒcb — коэффициент, учитывающий влияние способа производства свайных работ;
Rb — расчетное сопротивление бетона сжатию;
Ab — площадь сечения сваи нетто,
Rgc — расчетное сопротивление арматуры сжатию;
Ag — площадь сечения арматуры.
Пример 1.

Определение несущей способности сваи по материалу
Определить несущую способность буронабивной сваи диаметром d = 0,2 м по материалу. Свая выполняется в глинистом грунте без крепления стенок и отсутствии грунтовых вод. Материал сваи: бетон В20. Свая армирована 4 стержнями d12 A400.
Решение:
Площадь сечения сваи нетто:
Ab = πd 2 /4 = 3,14 * 0,22 2 /4 = 0,0314 м 2 .
Площадь сечения 4d12 A400: Ag = 452 мм 2 = 452 * 10 -6 м 2 .
Расчетное сопротивление бетона сжатию: Rb = 11,5 МПа.
Расчетное сопротивление арматуры А400 сжатию:
Rgc = 355 МПа.
Коэффициент условии работы бетона: ϒb3 = 0,85.
Коэффициент, учитывающий влияние способа производства свайных работ: ϒcb = 1,0.
Расчетная нагрузка, допускаемая на .железобетонную сваю но материалу:

N = 0,85* 1,0 * 11,5 * 0,0314 + 355 * 452 * 10 -6 = 0,467 МПа = 467 кН.

Расчет свай по несущей способности грунта

Одиночную сваю в составе фундамента и вне его по несущей способности грунтов основания следует рассчитывать исходя из условия:

где N — расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании);
Fd — расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи.
γk — коэффициент надежности по грунту.

При расчете свай всех видов как на вдавливающие, так и на выдергивающие нагрузки продольное усилие, возникающее в свае от расчетной нагрузки N, следует определять с учетом собственного веса сваи, принимаемого с коэффициентом надежности ио нагрузке, увеличивающим расчетное усилие.
Если расчет свайных фундаментов производится с учетом ветровых и крановых нагрузок, то воспринимаемую крайними сваями расчетную нагрузку допускается повышать на 20 % (кроме фундаментов опор линий электропередачи).
Если сваи фундамента опоры моста в направлении действия внешних нагрузок образуют один или несколько рядов, то при учете (совместном или раздельном) нагрузок от торможения, давления ветра, льда и навала судов, воспринимаемых наиболее нагруженной сваей, расчетную нагрузку допускается повышать на 10 % при четырех сваях в ряду и на 20 % при восьми сваях и более При промежуточном числе свай процент повышения расчетной нагрузки определяется интерполяцией.
Расчетную нагрузку на сваю N, кН. следует определять, рассматривая фундамент как рамную конструкцию, воспринимающую вертикальные и горизонтальные нагрузки и изгибающие моменты.
Для фундаментов с вертикальными сваями расчетную нагрузку на сваю допускается определять по формуле:

Читайте также:  Сваи винтовые для фундамента расчет нагрузки

где Nd — расчетная сжимающая сила, кН;
Mx , My расчетные изгибающие моменты, кНм, относительно главных центральных осей x и y плана свай в плоскости подошвы ростверка;

n — число свай в фундаменте.
xi, yi — расстояния от главных осей до оси каждой сваи, м;

х , у — расстояния от главных осей до оси каждой сваи, для которой вычисляется расчетная нагрузка, м.

Рис. 1. Схема для определении нагрузки на сваю

Горизонтальную нагрузку, действующую на фундамент с вертикальными сваями одинакового поперечного сечения, допускается принимать равномерно распределенной между всеми сваями.
Сваи и свайные фундаменты следует рассчитывать по прочности материала и производить проверку устойчивости фундаментов при действии сил морозного пучения, если основание сложено пучинистыми грунтами.

Пример 2.

Определение нагрузок на сваи во внецентренно-нагруженном фундаменте

Необходимо определить нагрузки, приходящиеся на сваи (см. рис.2). Количество свай в фундаменте n = 6. Нагрузки, действующие на фундамент:

Расчет свай на совместное действие вертикальной и горизонтальной сил и момента

В.1 При расчете одиночных свай на совместное действие вертикальной и горизонтальной сил и момента допускается проводить расчеты в соответствии со схемой, приведенной на рисунке В.1.

Рисунок В.1 – Схема нагрузок на сваю

В.2 При проведении расчетов допускается применение компьютерных программ, описывающих механическое взаимодействие балок и упругого основания (балка на упругом основании). При этом грунт, окружающий сваю, допустимо рассматривать как упругую линейно-деформируемую среду, характеризуемую коэффициентом постели сz, кН/м 3 (тс/м 3 ), возрастающим с глубиной.

Расчетные значения коэффициента постели сz грунта на боковой поверхности сваи допускается определять по формуле

(В.1)

где К – коэффициент пропорциональности, кН/м 4 (тс/м 4 ), принимаемый в зависимости от вида грунта, окружающего сваю, по таблице В.1;

z – глубина расположения сечения сваи в грунте, м, для которой определяется коэффициент постели, по отношению к поверхности грунта при высоком ростверке или к подошве ростверка при низком ростверке;

gс – коэффициент условий работы (для отдельно стоящей сваи gс = 3).

В.3 Расчет свай на совместное действие вертикальной и горизонтальной сил и момента должен включать:

а) проверку устойчивости грунта согласно В.7;

б) расчет свай по деформациям, включающий проверку соблюдения условий допустимости расчетных значений горизонтального перемещения головы сваи ир и угла

где ир, yр – расчетные значения соответственно горизонтального перемещения головы сваи, м, и угла ее поворота, рад;

uu, yu – предельные допустимые значения соответственно горизонтального перемещения головы сваи, м, и угла ее поворота, рад.

Величины uu, yu должны задаваться в проекте из условия нормальной эксплуатации проектируемых строительных конструкций здания или сооружения;

в) проверку сечений свай по предельным состояниям первой и второй групп (по прочности, образованию и раскрытию трещин) на совместное действие расчетных усилий – вертикальной силы, изгибающего момента и поперечной силы.

B.4 Расчеты по определению прочности свай всех видов следует проводить с учетом формулы 7.1 с использованием коэффициента деформации ae (1/м), определяемого по формуле

(В.4)

где Е – модуль упругости материала сваи, кПа (тс/м 2 );

I – момент инерции поперечного сечения сваи, м 4 ;

bр – условная ширина сваи, м, принимаемая равной: для свай с диаметром стволов 0,8 м и более bр = d + 1, а для остальных размеров сечений свай bр = 1,5d + 0,5, м;

gс – коэффициент условий работы;

d – наружный диаметр круглого или сторона квадратного, или сторона прямоугольного сечения свай в плоскости, перпендикулярной действию нагрузки, м.

(Опечатка. Июнь 2011 г.)

В.5 При статическом расчете свай в составе куста следует учитывать их взаимодействие. В этом случае допустимо производить расчет как для одиночной сваи, но коэффициент пропорциональности К умножается на понижающий коэффициент ai, определяемый по формуле

(В.5)

где gс – коэффициент, учитывающий уплотнение грунта при погружении свай и принимаемый: gс = 1,2 для забивных свай сплошного сечения и gс = 1 для остальных видов свай;

d – диаметр или сторона поперечного сечения сваи, м;

(В.6)

где xi, уi – координаты оси i-й сваи в плане, причем горизонтальная нагрузка приложена в направлении оси х;

Произведение в формуле (В.5) распространяется только на сваи куста, непосредственно примыкающие к i-той свае.

B.6 Для определения реакций в голове свай, объединенных общим ростверком, следует проводить специальные расчеты. При проведении таких расчетов каждая свая моделируется как балка, взаимодействующая с упругим основанием, а головы свай объединяются элементами, моделирующими фундаментные конструкции.

B.7 Расчет устойчивости основания, окружающего сваю, должен производиться по условию ограничения расчетного давления sz, оказываемого на грунт боковыми поверхностями свай

(В.7)

где sz – расчетное давление на грунт, кПа (тс/м ), боковой поверхности сваи на глубине z, м, отсчитываемой при высоком ростверке от поверхности грунта, а при низком ростверке – от его подошвы [при ael £ 2,5 – на двух глубинах, соответствующих z = l/3 и z = l; при ael > 2,5 – на глубине z = 0,85/ae, где ae определяется по формуле (В.5)];

gI – расчетный удельный (объемный) вес грунта ненарушенной структуры, кН/м 3 (тс/м 3 ), определяемый в водонасыщенных грунтах с учетом взвешивания в воде;

jI, cI – расчетные значения соответственно угла внутреннего трения грунта, град, и удельного сцепления грунта, кПа (тс/м 2 );

x – коэффициент, принимаемый для забивных свай и свай-оболочек x = 0,6, а для всех остальных видов свай x = 0,3;

h1 – коэффициент, равный единице, кроме случаев расчета фундаментов распорных сооружений, для которых h1 = 0,7;

h2 – коэффициент, учитывающий долю постоянной нагрузки в суммарной нагрузке, определяемый по формуле

(В.8)

где Мс – момент от внешних постоянных нагрузок в сечении фундамента на уровне нижних концов свай, кН×м (тc×м);

Мt – то же, от внешних временных расчетных нагрузок, кН×м (тc×м);

– коэффициент, принимаемый за исключением случаев расчета:

а) особо ответственных сооружений, для которых при ael £ 2,6 принимается и при ael ³ 5 принимается ; при промежуточных значениях ael значение определяется интерполяцией;

б) фундаментов с однорядным расположением свай на внецентренно приложенную вертикальную сжимающую нагрузку, для которых следует принимать независимо от значения ael.

Примечание – Если расчетные горизонтальные давления на грунт sz не удовлетворяют условию (В.7), но при этом несущая способность свай по материалу недоиспользована и перемещения свай меньше предельно допускаемых значений, то при приведенной глубине свай ael > 2,5 расчет следует повторить, приняв уменьшенное значение коэффициента пропорциональности К. При новом значении К необходимо проверить прочность сваи по материалу, ее перемещения, а также соблюдение условия (В.7).

(Опечатка. Июнь 2011 г.)

Грунты, окружающие сваи, и их характеристикиКоэффициент пропорциональности К, кН/м 4 (тс/м 4 )
Пески крупные (0,55 £ е £ 0,7); глины и суглинки твердые (IL 0,025

Несущую способность Fd, кН, пирамидальных свай с наклоном боковых граней ip > 0,025 допускается определять как сумму сил расчетных сопротивлений грунта основания на боковой поверхности сваи и под ее нижним концом по формуле

(Г.1)

где Аi – площадь боковой поверхности сваи в пределах i-го слоя грунта, м 2 ;

a – угол конусности сваи, град.;

d – сторона сечения нижнего конца сваи, м;

п1, п2 – коэффициенты, значения которых приведены в таблице Г.1.

Сопротивления грунта под острием сваи pi и на ее боковой поверхности р’i, кПа, определяют по формуле

(Г.2)

где Еi – модуль деформации грунта i-го слоя, кПа, определяемый по результатам прессиометрических испытаний;

vi – коэффициент Пуассона i-го слоя грунта, принимаемый в соответствии с требованиями СП 22.13330;

x – коэффициент, значения которого приведены в таблице Г.1.

(Г.3)

(Г.4)

hi – средняя глубина расположения i-го слоя грунта, м.

КоэффициентУгол внутреннего трения грунта jI,i, град.
п10,530,480,410,350,300,240,200,150,100,06
п20,940,880,830,780,730,690,650,620,580,54
x0,060,120,170,220,260,290,320,350,370,39
Примечание – Для промежуточных значений угла внутреннего трения jI,i значения коэффициентов п1, п2 и x определяют интерполяцией.

Приложение Д
(рекомендуемое)

Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы

Ссылка на основную публикацию