Расчет на продавливание фундаментной плиты пример - Brigada-Doma.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Расчет на продавливание фундаментной плиты пример

Пример продавливание у края плиты (СП)

1 – замкнутый расчетный контур №1, 2 – незамкнутый расчетный контур №2, 3 – незамкнутый расчетный контур №3.

Расчет плиты плоского монолитного перекрытия на продавливание

Цель: Проверка режима расчета на продавливание в постпроцессоре «Железобетон» вычислительного комплекса SCAD

Задача: Проверить правильность анализа прочности на продавливание бетонного элемента при действии сосредоточенной силы и изгибающего момента в случае расположения площадки приложения нагрузки у края плиты.

Соответствие нормативам: СНиП 52-101-2003, СП 63.13330.2012.

Исходные данные:

h = 230 ммТолщина плиты
h = 200 ммУсреднённая рабочая высота плиты
a×b = 500×400 ммРазмеры сечения колонн
F = 150 кННагрузка, передающаяся с перекрытия на колонну
Msup = 80 кН∙мМомент в сечении колонны по верхней грани плиты
Minf = 90 кН∙мМомент в сечении колонны по нижней грани плиты
x = 500 ммРасстояние от центра сечения колонны до свободного края плиты
Класс бетонаВ25

Аналитическое решение:

В данном случае необходимо проверить прочность трех контуров расчетного поперечного сечения:Аналитическое решение:

контур №1 – замкнутый контур вокруг сечения колонны на расстоянии 0,5h от контура колонны;

контур №2 – незамкнутый контур вокруг сечения колонны на расстоянии 0,5h от контура колонны с продлением контура до свободного края плиты;

контур №3 – незамкнутый контур вокруг сечения колонны на расстоянии 1,5h от контура колонны (контура поверочного расчета без учета арматуры).

Периметр расчетного контура поперечного сечения:

Площадь расчетного контура поперечного сечения:

Предельное усилие, воспринимаемое бетоном:

Момент инерции расчетного контура относительно оси Х, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Момент инерции расчетного контура относительно оси Y, проходящей через его центр тяжести:[
I_ =2frac^ <3>><12>+2cdot L_ left( ><2>>
right)^<2>=
quad
2frac <0,7^<3>><12>+2cdot 0,6left( <2>> right)^<2>=quad
0,204 м^<3>.
]

Момент сопротивления расчетного контура бетона

Изгибающий момент, который может быть воспринят бетоном в расчетном поперечном сечении:

Для СНиП 52-101-2003:

Прочность плиты при продавливании:

[
К1 = 0,275 + 0 + 0,275 = 0,55
]

Для СП 63.13330.2012:

Прочность плиты при продавливании:

[
К1 = 0,275 + 0 + 0,1375 = 0,413
]

Незамкнутый контур №2:

Периметр расчетного контура поперечного сечения:

Площадь расчетного контура поперечного сечения:

Координата Х центра тяжести незамкнутого контура относительно левого края плиты:

Предельное усилие, воспринимаемое бетоном:

Момент инерции расчетного контура относительно оси Х, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Момент инерции расчетного контура относительно оси Y, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Изгибающий момент, который может быть воспринят бетоном в расчетном поперечном сечении:

Для СНиП 52-101-2003:

Прочность плиты при продавливании:

Для СП 63.13330.2012:

Прочность плиты при продавливании:

Незамкнутый контур №3:

Периметр расчетного контура поперечного сечения:

Площадь расчетного контура поперечного сечения:

Координата Х центра тяжести незамкнутого контура относительно левого края плиты:

Предельное усилие, воспринимаемое бетоном:

Момент инерции расчетного контура относительно оси Х, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Момент инерции расчетного контура относительно оси Y, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Изгибающий момент, который может быть воспринят бетоном в расчетном поперечном сечении:

Для СНиП 52-101-2003:

Прочность плиты при продавливании:

Для СП 63.13330.2012:

Прочность плиты при продавливании:

Результаты расчета SCAD:

Узел № 5

Коэффициент надежности по ответственности γn = 1
Бетон
Вид бетона: Тяжелый
Класс бетона: B25

Коэффициенты условий работы бетона

учет нагрузок длительного действия

учет характера разрушения

учет вертикального положения при бетонировании

учет замораживания/оттаивания и отрицательных температур

Расстояние до ц.т. арматуры

Результаты расчета
Расчетный случай – крайняя колонна
Длина контура верхнего основания пирамиды продавливания – 1800 мм
Длина контура нижнего основания пирамиды продавливания – 2300 мм

Сравнение решений (по СНиП 52-101-2003)

Проверено по СНиП

Прочность без учета армирования

прочность на продавливание по незамкнутому контуру бетонного элемента при действии сосредоточенной силы и изгибающих моментов (в том числе дополнительных от внецентренного приложения силы относительно контура продавливания) с векторами вдоль осей X,Y (площадка приложения у края плиты)

Сравнение решений (по СП 63.13330.2012)

Проверено по СП

Прочность без учета армирования

прочность на продавливание по незамкнутому контуру бетонного элемента при действии сосредоточенной силы и изгибающих моментов (в том числе дополнительных от внецентренного приложения силы относительно контура продавливания) с векторами вдоль осей X,Y (площадка приложения у края плиты)

Расчет продавливания фундаментной плиты

Расчет продавливания фундаментной плитыПроводя расчет плиты фундамента на продавливание, можно с точностью определить габариты монолитного блока и обеспечить нужный уровень прочности фундамента (с запасом). Основная цель проведения расчетов – добиться оптимальных прочностных показателей основания, определив минимально необходимое количество материалов, марку бетонной смеси, способ армирования. Это позволит быть уверенным в эксплуатационных показателях сооружения, потратив наименьшую сумму (насколько это возможно). Способ исчисления зависит от особенностей сооружения будущей конструкции, поэтому в каждом случае его следует проводить в соответствии с имеющимися показателями.

Размещение плит с колоннами внутри периметра

Проводя расчет основания на продавливание колонной (столбами), нужно учитывать вид его конструкции:

  • Плита расположена между столбами.
  • Столб установлен на основание.
  • Все элементы фундамента взаимно сопряжены.

Для всех перечисленных видов конструкции основания существует общее условие: показатель сосредоточенного усилия нагрузки должен быть меньше, чем уровень выдерживаемой силы используемого бетонного раствора (С Схема отдельного основания под колонну

Уровень разгружающей силы фундаментной конструкции плитного типа равен производимой нагрузке собственной массой, которую ограничивает контур площади. Как найти первую уже известно, поэтому ищем вторую:

Н см = (С сеч1 + В пл)(С сеч2 + В пл).

Продавливание фундаментного перекрытия колонной, расположенной над ним, находится по формуле:

С = С сеч – Д сила.

Если конструкция подразумевает сопряжение элементов (основание и колонну), следует применять формулу:

С = С сеч – Д сила – Р усил.

Р усил – уровень усиления разгружающего типа от давления на поверхность почвы.

Для значительного увеличения прочности перекрытий применяется поперечное армирование. Качественное восприятие нагрузок армопоясом практически равно этому показателю бетона. Проводить расчет на продавливание актуально только для плитного основания, так как применение ленточного подразумевает равномерное распределение нагрузок.

Плита с колоннами у края

Еще при проектировании фундамента определяется способ армирования. Арматура, расположенная вертикально, делает конструкции более прочной. Распространенная практика – создание пространственного каркаса, который состоит из 2 горизонтальных поясов арматуры, скрепленных вертикальными прутьями. Для скрепления элементов нужно использовать хомуты из пластика или специальную проволоку – это позволит избежать образования очагов коррозии, появление которых провоцирует внутреннее напряжение во время сварочных работ. Избежав коррозии, ресурс основания становиться значительно больше.

Уменьшить стоимость фундаментной перегородки можно за счет использования вертикального армирования исключительно в местах давления колонн.

Расчет продавливания плитного основания

Проводя расчет для колонн, расположенных у края основания, должен учитываться самый неблагоприятный показатель. Рассчитать продавливание в таком случае можно по формуле:

1 > М у / М макс + М х / М ульт + С / С макс.

М у / М макс – показатели сосредоточенных моментов, которые действуют в конкретных направлениях

М ульт – значение предельных моментов, которые способно выдерживать перекрытие в конкретных направлениях.

Проводя расчет площади, исчисляя придавливание, стоит учесть промежуток между гранями колонны, ширину монолитного основания (Ш осн), размер колонны (С сеч1 и С сеч2), расстояние между колонной и краем фундамента (Р):

П прод = 0.5 В пл (С сеч1 + С сеч1 (Ш осн / 0.5 В пл) + 2 С сеч2 + 2Р + В пл).

Рассчитывая продавливание, нужно взять во внимание отверстия в основании для коммуникационных узлов, ревизионных люков и т. п. Если такие элементы находятся от колонны на расстоянии, меньшем 6В пл – проводятся исчисления с учетом этих моментов. Пример формул в таком случае аналогичен предыдущим, но стоит учесть некоторые особенности:

  • К краям отверстия проводятся 2 прямые линии от центра колонны.
  • Фундаментную плиту рассчитывают без учета сектора, находящегося между этими линиями.
Читайте также:  Правила вязки арматуры для фундамента

Пример расчета

Как пример, возьмем случай, когда на поверхность перекрытия действует установленная колонна – сосредоточенное давление (действует на определенный участок поверхности). В этом случае нужно определить силу продавливания.

  • Ширина основания (Ш осн): 220 см.
  • Класс бетона: В25 (Р бт = 9.7 кг/см2).
  • Нижняя грань перегородки от оси армопояса находится на расстоянии 0.25 мм.
  • Сила продавливания С прод = 3.5 Т.
  • Площадь продавливания (П род): 0.3 х 0.4 м.
  • Рабочая высота (Р выс): 2 м.

К бет

Подготовил
Самохин Олег Юрьевич

Расчет фундаментной плиты на продавливание – условия и процесс выполнения

Основной функцией фундамента является принятие и равномерное распределение на грунт нагрузок, поступающих от наземной части здания. Чтобы конструкция оказалась работоспособной и не чрезмерно массивной, на застраиваемом участке требуется провести гидрогеологическое исследование грунтов и выполнить проект фундамента, исходя из конкретных условий. При его разработке учитываются различные факторы, в том числе возможные деформации основания, характерные для всех или только отдельных видов подземных конструкций. К примеру, расчет фундаментной плиты на продавливание относится к специфическим вычислениям, а определение несущей способности производится при проектировании любых фундаментов.

Продавливающая нагрузка

Плитный фундамент представляет собой конструкцию, в которой ширина и длина имеют показатели, значительно превышающие ее толщину. В этом случае сосредоточенные нагрузки могут вызвать локальное продавливание бетонного монолита, к примеру, в месте расположения массивного оборудования малой площади, сваи или одной из колонн. Точно выполненный расчет позволяет обойти подобные явления путем усиления конструкции, а именно:

  • увеличения толщины бетонной плиты, зачастую – только в местах сосредоточения нагрузок;
  • расширения подошвы опирающейся конструкции;
  • укладки дополнительных арматурных стержней и наращивания защитного слоя бетона в зоне действия точечной нагрузки;
  • повышения марки бетонного раствора.

Так как сила давления на фундаментную плиту от колонны или столба затрагивает небольшую площадь, ее показатели могут достигать значительных величин. От основания контактной поверхности вглубь фундамента сосредоточенная нагрузка распределяется под углом 45 градусов, что формирует в теле плиты опорную пирамиду, принимающую на себя основное давление от колонны. В результате, на границе между нагруженной и незадействованной частью бетонного монолита постоянно присутствуют растягивающие усилия, что губительно влияет на искусственный камень.

Чем тоньше фундаментная плита или меньше опорная площадь колонны, тем более пагубное воздействие на монолитный бетон оказывает продавливающая нагрузка.

Наглядным примером может служить человек, шагающий по неутрамбованному снегу. Нагрузка от его веса сосредотачивается то на одной, то на другой ноге, поэтому настил с легкостью продавливается. Но стоит только путнику встать на лыжи, как проблемы исчезают, так как опорная площадь увеличивается, за счет чего масса человека начинает распределяться по поверхности снега равномернее. Что касается плитного фундамента, то увеличение его толщины, также как и расширение контактной площади с колонной, приводит к более удачной дислокации нагрузок.

Рассматривая продавливание фундаментной плиты, нельзя обойти частный пример, касающийся точечных свайных опор. В этом случае на плитный ростверк тоже воздействуют сосредоточенные нагрузки, но их распределение в бетонном монолите происходит снизу вверх. Другими словами, схема, описанная выше, получается перевернутой.

Наиболее критичными для бетонной плиты считаются продавливающие нагрузки, действующие сразу в двух направлениях – снизу и сверху, но в разных плоскостях. К примеру, когда колонна расположена между сваями. В этом случае возрастает вероятность продавливания плитного ростверка сразу в нескольких местах.

Расчет на продавливающие нагрузки

Обеспечить запас прочности на продавливание фундаментной плиты, не превысив разумных пределов, поможет соответствующий расчет. Им не стоит пренебрегать в случаях присутствия сосредоточенных нагрузок, иначе затраченные материальные средства на возведение фундамента и наземной части дома окажутся напрасными. Экономия на проекте, в данной ситуации, может привести к фатальным результатам.

Расчет на продавливание плитного фундамента производится для определения основных параметров конструкции, таких как:

  • толщина плиты;
  • общая площадь арматуры – количество и диаметр стержней;
  • класс бетона.

Величины определяются индивидуально, исходя из конструктивных особенностей строения и геологических изысканий грунта на участке. Сам расчет производится по формулам и требованиям государственных или отраслевых нормативов. Привязка объекта к местности выполняется персонально.

Прежде всего, выясняется рабочая толщина монолитной плиты без учета защитного слоя бетона, расположенного с обратной от воздействующей нагрузки стороны. К примеру, если толщина плитного фундамента составляет 500мм, а расстояние от арматурных стержней до ближайшей наружной плоскости монолита – 45мм, то в расчете будет участвовать высота плиты, составляющая 455мм. Этот показатель прибавляется ко всем четырем сторонам опорной части колонны, в результате чего получается размер нижнего основания пирамиды продавливания.

Алгоритм и используемые при расчете плитного фундамента на продавливание формулы зависят от варианта расположения колонн:

  • внутри периметра плиты;
  • у края плиты;
  • возле стен.

Расчетный показатель сосредоточенной силы не должен превышать максимальную нагрузку, которую способен воспринимать бетон определенной марки, усиленный арматурным каркасом. Данное условие является основным для всех расчетов на продавливание. Следует учитывать, что поперечное армирование в значительной степени увеличивает восприятие продавливающих усилий, равномерно распределяя их в толще фундаментной плиты и расширяя зону опорной пирамиды. Дополнительные вертикальные стержни концентрированно располагают в зоне установки колонн, а не по всей площади плиты, в результате чего удается избежать перегруженности фундамента арматурой.

Коэффициент армирования является важной составляющей расчета, поэтому он закладывается еще на стадии проектирования.

Если при расчете плиты на продавливание основное требование по нагрузкам не обеспечивается, то инженеры используют локальное утолщение фундаментной плиты с помощью банкетки. Размеры ее сторон выбирают таким образом, чтобы они могли перекрывать площадь пирамиды продавливания на уровне стыковки банкетки и плиты. Расчет и корректировки продолжают до тех пор, пока значение сосредоточенной нагрузки не окажется ниже максимально возможного усилия, воспринимаемого бетоном.

Расчет фундаментной плиты на продавливание

На фундаментную плиту на естественном основании опирается колонна, передающая нагрузку от здания. Требуется выполнить расчет фундаментной плиты на продавливание согласно п. 3.96 Пособия по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры к СНиП 2.03.01-84.

Толщина плиты 500 мм, расстояние от грани бетона до оси рабочей арматуры 45 мм, класс бетона В20 (Rbt = 8,16 кг/см² при коэффициенте условий работы 0,9), вертикальное усилие в основании колонны N = 360 т, сечение колонны 400х400 мм, расчетное сопротивление грунта основания R = 34 т/м².

Определим h₀ = 500 – 45 = 455 мм.

Площадь верхнего основания пирамиды продавливания равна площади колонны 0,4х0,4 м.

Определим размеры граней нижнего основания пирамиды продавливания (они одинаковые): 0,4 + 2∙0,455 = 1,31 м, площадь нижнего основания пирамиды равна 1,31∙1,31 = 1,72 м².

Согласно пособию, продавливающая сила равна силе N = 360 т за вычетом силы, приложенной к нижнему основанию пирамиды продавливания и сопротивляющейся продавливанию. В нашем случае такой силой служит расчетное сопротивление основания, равное R = 34 т/м². Зная площадь основания пирамиды, переведем расчетное сопротивление в сосредоточенную нагрузку: 34∙1,72 = 58 т. В итоге, мы можем определить продавливающую силу: F = 360 – 58 = 302 т.

Читайте также:  Как правильно разметить фундамент

Определим периметры оснований пирамиды:

4∙0,4 = 1,6 м – периметр меньшего основания;

4∙1,31 = 5,24 м – периметр большего основания.

Найдем среднеарифметическое значение периметров:

(1,6 + 5,24)/2 = 3,42 м.

Определим, чему равна правая часть уравнения (200):

1,0∙8,16∙10∙3,42∙0,455 = 126 т.

Проверим, выполняется ли условие (200):

F = 302 т > 126 т – условие не выполняется, фундаментная плита не проходит на продавливание.

Проверим, поможет ли нам установка поперечной арматуры в зоне продавливания. Зададимся поперечной арматурой диаметром 10 мм с шагом 150х150 мм и определим количество стержней, попадающих в зону продавливания (т.е. пересекающих грани пирамиды продавливания).

У нас получилось 72 стержня, суммарной площадью Аsw = 72∙0,785 = 56,52 см².

Поперечная арматура на продавливание должна быть либо в виде замкнутых вязаных хомутов, либо в виде каркасов, сваренных контактной сваркой (ручная дуговая не допускается).

Теперь мы можем проверить условие (201), учитывающее поперечную арматуру при продавливании.

Найдем Fsw (здесь 175 МПа = 1750 кг/см² — предельное напряжение в поперечных стержнях):

Fsw = 1750∙56,52 = 98910 кг = 98,91 т.

При этом должно удовлетворяться условие Fsw = 98.91 т > 0.5Fb = 0.5∙126 = 63 т (условие выполняется).

Найдем правую часть условия (201):

126 + 0,8∙98,91 = 205 т.

Проверим условие (201):

F = 302 т > 205 т – условие не выполняется, фундаментная плита с поперечной арматурой не выдерживает продавливание.

Проверим также условие F 2Fb = 2∙126 = 252 – условие не выполняется, в принципе, при таком соотношении сил армирование помочь не может.

В таком случае следует локально увеличить толщину плиты – сделать банкетку в районе колонны и пересчитать плиту с новой толщиной.

Принимаем толщину банкетки 300 мм, тогда общая толщина плиты в месте продавливания будет равна 800 мм, а h₀ = 755 мм. Важно определить размеры банкетки в плане так, чтобы пирамида продавливания находилась полностью внутри банкетки. Мы примем размеры банкетки 1,2х1,2 м, тогда она полностью покроет пирамиду продавливания.

Повторим расчет на продавливание без поперечной арматуры с новыми данными.

Площадь верхнего основания пирамиды продавливания равна площади колонны 0,4х0,4 м.

Определим размеры граней нижнего основания пирамиды продавливания (они одинаковые): 0,4 + 2∙0,755 = 1,91 м, площадь нижнего основания пирамиды равна 1,91∙1,91 = 3,65 м².

Согласно пособию, продавливающая сила равна силе N = 360 т за вычетом силы, приложенной к нижнему основанию пирамиды продавливания и сопротивляющейся продавливанию. В нашем случае такой силой служит расчетное сопротивление основания, равное R = 34 т/м². Зная площадь основания пирамиды, переведем расчетное сопротивление в сосредоточенную нагрузку: 34∙3,65 = 124 т. В итоге, мы можем определить продавливающую силу: F = 360 – 124 = 236 т.

Определим периметры оснований пирамиды:

4∙0,4 = 1,6 м – периметр меньшего основания;

4∙1,91 = 7,64 м – периметр большего основания.

Найдем среднеарифметическое значение периметров:

(1,6 + 7,64)/2 = 4,62 м.

Определим, чему равна правая часть уравнения (200):

1,0∙8,16∙10∙4,62∙0,755 = 284 т.

Проверим, выполняется ли условие (200):

Расчет на продавливание плиты перекрытия

Обычная плита перекрытия является железобетонной конструкцией, длина которой равна ширине комнаты или половине ширины помещения внутри здания.

Схема монолитного перекрытия.

Она может опираться на контур помещения полностью или же иметь одну свободную от опоры сторону.

Расчет таких конструкций хорошо известен. Значительно сложнее выполнить вычисление поверхности на продавливание, необходимость в котором возникает, если на ограниченную площадь действует равномерно распределенная нагрузка. Такую нагрузку иногда называют сосредоточенной в пределах небольшой площадки на плите.

Основные параметры

Предварительный расчет на продавливание целесообразно выполнить для определения размеров создаваемой площади перекрытия, то есть при ее конструировании. При этом отдельно следует рассчитать ее размеры в случае предполагаемого действия только одной сосредоточенной нагрузки в середине плиты и при одновременном воздействии на нее указанной нагрузки и изгибающего момента.

Для готовых стандартных плит возможны следующие варианты вычислений:

Схема арматуры против продавливания перекрытий.

  • нагрузка расположена у края;
  • нагрузка расположена в углу;
  • в зоне действия нагрузки имеется поперечная арматура;
  • конструкция перекрытия имеет поперечную арматуру из профилированной стали по всей длине и ширине;
  • колонна имеет расширенные части (капители);
  • фундаментные плиты имеют банкетки;
  • вблизи зоны продавливания имеются отверстия или проемы;
  • конструкция расположена непосредственно у стены.

Расчет на продавливание

Схема пирамиды продавливания бетона.

Следует отметить, что сегодня среди специалистов согласия относительно того, как же рассчитывать прочность плиты, если на нее действует нагрузка, сосредоточенная в ограниченном контуре. Однако существуют пособия, которые помогут хозяину, решившему построить дом с колоннами, выполнить вычисления. Они и не очень простые, поэтому придется усвоить, возможно, ранее неизвестные ему термины из области сопротивления материалов.

Читайте также: Расчет параметров плиты перекрытия

Подходящим документом в этом отношении является дополнение к СП 52‑101‑2003, которое называется “Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры”. Оно полезно и тем, что в нем имеются примеры расчетов, которые можно использовать и для индивидуального вычисления.

Таблица нагрузки перекрытий.

На рисунке 3 представлены два варианта размещения нагруженной площадки: а) внутри плоского элемента; б), в) у края плоского элемента. На рисунке 3 обозначено: 1 – площадь нагрузки; 2 ‑расчетный контур варианта а); 2′- расчетный контур вариантов б) и в); 3 – пересечение осей X1 и Y2. определяющее центр тяжести контура; 4 ‑ пересечения осей X и Y, определяющее центр тяжести площадки нагрузки; 5 – граница (край) плоского элемента.

Здесь учитывают действующую сосредоточенную силу и изгибающий момент. Поперечное сечение, принимающее нагрузку, определяют на расстоянии h /2, где h рабочая высота плиты. Чтобы выполнить расчет, необходимо знать сопротивление бетона растяжению Rbt и сопротивление растяжению поперечной арматуры Rsw .

В качестве примера проверим на продавливание не армированную поверхность перекрытия по следующим данным:

Схема сборной плиты перекрытия.

  • толщина плиты 220 мм (в качестве рабочей толщины считаем h =190 мм);
  • сверху и снизу примыкают колонны сечением 500×800 мм;
  • нагрузка, передаваемая от нее на колонну, N=800 кН;
  • момент по верхней грани в направлении размера колонны в 500 мм равен Mx,sup = 70 кНм;
  • момент по нижней грани в направлении размера колонны в 500 мм равен Mx,inf = 60 кНм;
  • момент по верхней грани в направлении размера колонны в 800 мм равен Mx,sup = 30 кНм;
  • момент по нижней грани в направлении размера колонны в 500 мм равен Mx,inf = 27 кНм;
  • бетон класса В30. допустимая нагрузка Rbt = 1,15 МПа.

Читайте также: Сколько бетона нужно для фундамента

Для решения поставленной задачи необходимо проверить выполнение условия:

Схема расчета монолитного перекрытия.

  • (F/u) + (M/Wb ) ≤ Rbt ×h ;
  • F = N = 800кН – сосредоточенная сила от внешней нагрузки;
  • и – периметр расчетного контура, он находится на расстоянии, равном половине рабочей толщины плиты;
  • и = 2(а + b + 2ho ) = 2(500 + 800 + 2.190) = 3360 мм;
  • Мх = (Mx,sup + Mx,inf )/2 = (70 + 60)/2 = 65 кНм;
  • Му = (My,sup + Му, inf )/2 = (30 + 27)/2 = 28,5 кНм;
  • Wb – момент сопротивления определяют для меньшей и большей стороны контура;
  • Wb = (а+h )×[ (а+h )/3+b+ h ] = (500+190)×[ (500+190)/3+800+ 190] = 841800 мм2;
  • Wb,y = (b+h )×[ (b+h )/3+a+ h ] = (800+190)×[ (800+190)/3+500+ 190] = 1009800 мм2;
  • находим сумму отношений Мх /Wb + Му / Wb,y = 65∙10 6 /841800 + 28,5∙10 6 /1009800 = 105,4 Н/мм;
  • находим величину F/u = 800∙10 3 /3360 = 238,1 Н/мм;
  • находим значение Rbt ×h = 1,15∙190 = 218,5 Н/мм;
  • проверяем условие (1) 238,1+105,4 = 343,5 Н/мм, что больше, чем Rbt ×h =218,5 Н/мм, то есть условие выполняется и перекрытие следует усилить арматурой.

Способы вычислений

В настоящее время существуют программы, позволяющие выполнить расчет конструкций на продавливание.

Расчёт на продавливание

Добрый день! Для нескольких колонн (узлы 7717, 7695, 7680, 7673, 7666) не выполняется расчёт на продавливание: “Усилие не соответствует расчёту на продавливание N>=0”. С чем это связано?

Читайте также:  Фундамент под хозблок на даче

В текущей версии отсутствует диагностика случаев, когда колонна имеет сопряжение со стеной (на самом деле контур продавливания в этом месте будет отличный от того, что строиться сейчас). На данный момент расчет продавливания выполняется только для отдельно стоящих колонн. Расчет продавливания стенами плиты перекрытия, а также колоннами фундаментной плиты не выполняется, но обязательно будет реализован.

С уважением, Алексей Тищенко

Что Вы можете посоветовать в этом случае? Есть способ альтернативно законструировать сопрягающиеся элементы (стены толщиной 200 мм, колонну 400х400 мм, перекрытия толщиной 200 мм), чтобы адекватная аналитическая модель получилась? (Cм. задачу Фрунзе19).
Я попробовала ввести по верху стен дополнительные балки сечением 200х400(h), ничего не изменилось. (См. задачу Фрунзе20).

Ещё вопросы по продавливанию и армированию пластин:

1. По верху нескольких колонн я задаю капители. Как определить, что размеров капители достаточно для восприятия продавливания? Контур продавливания не формируется в таком случае.
2. Капитель в аналитическом представлении выглядит как подвешенная к перекрытию на АЖТ плита. Верхнее и нижнее армирование этой плиты представляет собой армирование перекрытия на этом участке, верно? Тогда поперечная арматура в капители должна воспринимать продавливание? Какой шаг задавать поперечной арматуре, если армирование капители предполагается плоскими каркасами (см. рис. 1, 2)?

3. В некоторых пластинах программа выдает огромные значения поперечной арматуры (розовые области на шкале, см. прямоугольники на рис. 2, рис. 3). Как их нормализовать?

4. В участках перекрытий над колоннами рассчитана поперечная арматура, эти значения включают в себя арматуру продавливания или нет (рис. 4)?

С уважением, Елена.

  • Фрунзе20.spf (5.05 МБ)
  • Фрунзе19.lir (5.25 МБ)
  • Фрунзе20.lir (5.27 МБ)
  • Фрунзе19.spf (5.01 МБ)

Цитата
MEA пишет:
Что Вы можете посоветовать в этом случае? Есть способ альтернативно законструировать сопрягающиеся элементы (стены толщиной 200 мм, колонну 400х400 мм, перекрытия толщиной 200 мм), чтобы адекватная аналитическая модель получилась? (Cм. задачу Фрунзе19).
Я попробовала ввести по верху стен дополнительные балки сечением 200х400(h), ничего не изменилось. (См. задачу Фрунзе20).

Можно попробовать сделать следующее, смоделировать участок стены (только для проверки продавливания), где есть примыкание колонны на стержневые элементы с Г-образным или крестообразным сечениями (в зависимости от конфигурации в плане). Или попробовать не доводить стены до грани колонны и не обеспечивать их совместную работу, но этот вариант будет менее корректен. Или выполнить расчет в ручную.

Цитата
MEA пишет:
Ещё вопросы по продавливанию и армированию пластин:

1. По верху нескольких колонн я задаю капители. Как определить, что размеров капители достаточно для восприятия продавливания? Контур продавливания не формируется в таком случае.

Пока только посчитать в ручную.

Цитата
MEA пишет:
2. Капитель в аналитическом представлении выглядит как подвешенная к перекрытию на АЖТ плита. Верхнее и нижнее армирование этой плиты представляет собой армирование перекрытия на этом участке, верно?
Цитата
MEA пишет:
Тогда поперечная арматура в капители должна воспринимать продавливание? Какой шаг задавать поперечной арматуре, если армирование капители предполагается плоскими каркасами (см. рис. 1, 2)?

Шаг каркасов поперечной арматуры на продавливание определяется из расчета. Так же полезным будет следующий документ во вложении – Методика расчета ЖБ безбалочных перекрытий.

Цитата
MEA пишет:
3. В некоторых пластинах программа выдает огромные значения поперечной арматуры (розовые области на шкале, см. прямоугольники на рис. 2, рис. 3). Как их нормализовать?

Концентрация напряжений, а также не совсем «хорошая» сетка дали о себе знать. Как вариант ввести плоские АЖТ в плите, чтобы уменьшить пятна армирования в этих зонах.

Цитата
MEA пишет:
4. В участках перекрытий над колоннами рассчитана поперечная арматура, эти значения включают в себя арматуру продавливания или нет (рис. 4)?

Поперечная арматура в пластинчатых элементах выводиться без учета продавливания. Расчет на продавливание есть проверкой столь завышенного поперечного армирования в пластинах, связанного с особенностями МКЭ.

С уважением, Алексей Тищенко

Цитата
alekstish пишет:
не совсем «хорошая» сетка
Цитата
alekstish пишет:
Как вариант ввести плоские АЖТ в плите, чтобы уменьшить пятна армирования в этих зонах.

Ещё в местах, где колонна имеет сопряжение со стеной, следуя Вашему совету, стержневые элементы введу. Посмотрим, как это будет выглядеть.

Вручную, кончено, можно посчитать и размеры капителей, и продавливание над стенами, и вообще всё, что угодно. Буду ждать доработки программы в следующих релизах.

Цитата
ander пишет:
мда.. а что такая жуткая сетка, особенно в капителях? Не уж то алгоритму на продавливание все равно на качество сетки?

вам уже указали на проблемы в сетке, смотрим ваш же скриншот в сообщении 3, п.3, там в овалах треугольники сходятся в узел колонны.

Цитата
MEA пишет:
АЖТ, на мой взгляд, искусственно улучшат работу плиты. Нам как-то в организацию на экспертизу расчёт в МОНОМАХе предоставили, где во все узлы сопряжения колонн с перекрытием были введены АЖТ. Продавливания вообще не возникало, изополя напряжений были искажены. Некорректно так делать.

вы уж извините, но либо вы скрыли часть информации, либо не понимаете сути процесса.
АЖТ снижает пики за счет уменьшения учитываемого в расчете размера КЭ – точнее не учитывает усилие внутри границы АЖТ. Простой пример – балка на двух опорах. Вы можете принять 2 расчетные ситуации: длина равна от одного торца до другого торца и от ц.т. опорной площадки с одной стороны до другой. В этих случаях усилие на опоре и в пролете будут разными. С АЖТ нечто подобное. Мы также можем задать длину по торцам, а с помощью АЖТ (или жестких вставок) вычесть лишние усилия на опорных участках, но не длину. Это бывает полезно в более сложных случаях.
Вводить АЖТ (или паук) это нормально, если правильно задано; хуже того, для колонн с перекрытием это практически обязательно, т.к. момент передается не полностью, а крутящий вообще не передается. Некорректно смотреть изополя – это зло, они искажают сами по себе, это осреднение между соседними элементами; нужно смотреть мозаики, где осреднение происходит только между узлами в пределах одного элемента.

Продавливание, как явление, присутствует всегда, другое дело в пределах нормы или нет. А то, что программа не показывает армирование по поперечной силе для плит, это не означает, что нет продавливания. Считать/проверять в любом случае нужно, но не по подбору арматуры программы, а по доп. алгоритму проверки достаточности сечения/контура на продавливание.

Цитата
ander пишет:
мда.. а что такая жуткая сетка, особенно в капителях? Не уж то алгоритму на продавливание все равно на качество сетки?

Вы правы, алгоритму расчета на продавливание все равно какая сетка, но в данном случае речь зашла о поперечной арматуре в плите (расчетной без учета продавливания), где качество и размер имеет не малое значение.

С уважением, Алексей Тищенко

Цитата
alekstish пишет:
алгоритму расчета на продавливание все равно какая сетка

Цитата
ander пишет:
с арматурой все ясно, но продавливание же рассчитывается в зависимости от усилий снизу/сверху; опять-таки, когда колонна внизу и вверху проблем не возникает, но если этаж последний или первый (на плите), то часть усилий нужно брать с пластин, разве нет?

бесспорно, так и работает расчет, но чтобы увидеть разницу в усилиях на продавливание для одной и той же геометрии схемы, ну очень нужно “поиздеваться” над сеткой КЭ

Ссылка на основную публикацию